Теоретико-методичні основи навчання молодших школярів розв’язування текстових задач та розв’язування складених задач

План

1. Система складених текстових задач курсу математики початкових класів.

2. Теоретико-методичні основи підготовчої роботи до введення першої текстової складеної задачі.

3. Теоретико-методичні основи введення першої текстової складеної задачі. Різні методичні підходи до розв’язання цього питання.

4. Теоретико-методичні основи розвитку уявлень учнів про складену текстову задачу та процес її розв’язування. Розвиток умінь учнів розв'язувати складені текстові задачі.

5. Теоретико-методичні основи навчання учнів розв'язувати типові складені задачі на знаходження четвертого пропорційного, на пропорційний поділ, на знаходження невідомого за двома різницями, на знаходження середнього арифметичного, на складне правило трьох.

6. Теоретико-методичні основи навчання учнів розв'язувати задачі з типовим конкретним змістом та сюжетом.

7. Теоретико-методичні основи навчання учнів розв'язувати задачі з логічним навантаженням.

3 етап - складання плану розв’язування задачі.

- Що будемо визначати у першій дії? – Будемо визначати загальну кількість автомобілів.

- Як це будемо робити? – До кількості вантажних автомобілів додамо кількість легкових автомобілів (вчитель повинен вимагати такої відповіді, а не до 6 додамо 5).

- Що будемо визначати у другій дії? – Кількість автомобілів, що залишилися.

- Як це будемо робити? – Від загальної кількості автомобілів віднімемо кількість автомобілів, що виїхали з гаража.

4 етап – запис розв’язання задачі.

Аналіз методичної літератури та досвіду роботи вчителів початкових класів переконливо свідчить, що в курсі математики початкових класів існують:

- арифметичний спосіб запису розв’язання текстової задачі:

1)запис розв’язання задачі за діями; 2) запис розв’язання задачі за діями з коротким поясненням; 3) запис розв’язання задачі виразом; 4) запис розв’язання задачі за діями з запитаннями.

- алгебраїчний (склавши рівняння) спосіб запису розв’язання текстової задачі.

Арифметичний спосіб(таблиця№3):

Таблиця №3.

І спосіб ІІ спосіб ІІІ спосіб ІУ спосіб
1) 6+5=11 (авт.)
2) 11-7=4 (авт.)
Відповідь: 4 автомобіля залишилось.
1) 6+5=11 (авт.) – було у гаражі;
2)11-7=4 (авт.)
Відповідь: 4 автомобіля залишилось.
(6+5)-7=4 (авт)
Відповідь: 4 автомобіля залишилось.
1) Скільки автомобілів було у гаражі? 6+5=11 (авт.)
2) Скільки автомобілів залишилось?

11-7=4 (авт.).

Відповідь:4 автомобіля залишилось.

5 етап – робота над розвязаною задачею.

Є різноманітні форми роботи над розв’язаною задачею: 1) обговорення виконаного розв’язання (чому задача розв’язувалася дією додавання?, чому ми зуміли відповісти на запитання задачі?); 2) перевірку розв’язання задачі; 3) складання та розв’язання обернених (де невідоме стає відомим, а одне з відомих – невідомим), аналогічних (задачі, які мають однакову математичну структуру замінюються тільки дані, зміст) чи подібних (задачі, які мають різні математичні структури але схожі за сюжетом, числовими даними) задач з наступним порівнянням з даною задачею. 4) заміну числових даних задачі; 5) зміну запитання задачі; 6) відшукання різних способів розв’язання задачі; 7) зміну сюжету задачі; 8) знаходження помилок в умові задачі (наприклад: “У садку росло 5 кущів малини. 7 з них засохло. Скільки кущів малини залишилося у садку?”. Виправ помилку, використовуючи ті ж самі числа).


4.Теоретико-методичні основи розвитку уявлень учнів про складену текстову задачу та процес її розв’язування. Розвиток умінь учнів розв'язувати складені текстові задачі

Відповідно до теоретико-методичних основ роботи над будь-яким питанням одразу після введення першої складеної задачі розпочинається формування уміння учнів розв’язувати такі задачі. Розвиток уявлень учнів про складену задачу та процес її розв'язування включає в себе, з одного боку, розвиток уявлень про структуру такої задачі, а з іншого – розвиток уявлень про процес її розв'язування. Як свідчить аналіз методичних посібників для вчителів і підручників з математики для початкових класів, з цією метою використовується спеціальна система вправ. Вона спрямована на те, щоб сприяти розвиткові уявлень учнів про складену задачу та процес її розв’язування. Система вправ, які сприяють розвиткові уявлені учнів про складену задачу, включає принаймні наступні завдання:

1) вправи, основне призначення яких полягає в тому, щоб навчити школярів виділяти структурні елементи складеної задачі. З цією метою дітям пропонується виконати такі завдання: а) прочитайте задачу; б) прочитайте умову задачі; в) прочитайте запитання задачі; г) прочитайте умову задачі про себе, а запитання вголос; д) повторіть умову чи запитання задачі; е) прочитайте про себе відповідь на запитання задачі; є) чи можна розв’язати задачу одразу? ж) що відомо в задачі? з) що необхідно визначити в задачі?; і) чи можна цю задачу розв’язати однією дією?; и) чому цю задачу не можна розв’язати однією дією?; ї) яку маємо задачу: просту чи складену? тощо;

2) вправи на розв’язування задач із різною кількістю даних в умові, призначення яких полягає в тому, щоб привчати учнів розрізняти прості та складені задачі, не орієнтуючись на кількість даних;

3) задачі, для відповіді на запитання в яких слід виконати спочатку дві, потім три і нарешті - більшу кількість дій;

4) задачі з недостатніми і надлишковими даними;

5) завдання, в яких потрібно виявити зв’язки, що існують між даними. Для цього необхідно пропонувати дітям відповісти на такі запитання: що сказано в задачі про залежність між даними? Що можна визначити за цими даними?;

6) розв’язування задач, які мають різну будову запитання, або запитання в яких знаходяться в різних частинах задачі: а) задачі, в яких умова і запитання розділені; б) задачі, в яких умова і запитання розділені не повністю; в) задачі, в яких запитання містить числові дані (наприклад: «У крамниці було два рулони тканини 60 м і 80 м. Скільки тканини залишилося, якщо за день було продано 90 м?»); г) задачі, в яких запитання стоїть на початку задачі;

7) завдання, в яких потрібно перебудувати задачу таким чином, щоб запитання містило числові дані або не містило їх;

8) вправи, в яких необхідно переформулювати запитання так, щоб воно почало містити вказане слово (наприклад: знайти, дорівнює, обчислити тощо);

9) завдання на перетворення чи складання задач (наприклад: а) добери запитання до даної умови; б) добери умову до даного запитання; в) зміни умову чи запитання так, щоб задача розв’язувалась іншою дією; г) перетвори умову чи запитання так, щоб вона стала простою або складеною; д) склади обернену, подібну, схожу задачу або задачу з іншим сюжетом; е) склади задачу за малюнком, за розв’язанням, за виразом, за опорною схемою тощо);

10) завдання, в яких слід обґрунтувати, що представлені записи можуть бути розв’язанням задачі (наприклад: І. 1) 12–7=5; 2) 15–3=12. ІІ. 1) 15+2=17; 2) 17+15=32);

11) задачі з даними, які не перебувають у відношенні, що передбачає запитання, наприклад: “На прогулянку в ліс пішло 2 дівчинки. Одна з них знайшла 7 грибів, а друга – менше. Скільки грибів знайшли дівчатка разом?”;

12) вправи на перебудову задачі, коли ставиться вимога, щоб запитання стало містити чи не містити даних;

13) розв'язування задач, які містять різні запитання: чому дорівнює, знайти, обчислити, яка остача, яка вартість, обчисліть вартість тощо;

14) складання задач за даним розв’язуванням, за малюнком, за схемою, за виразом тощо;

15) вправи на порівняння задач;

16) вправи на перетворення задач у споріднену тощо.

Наступним завданням вчителя є розвиток уявлень учнів про процес розв'язування складеної задачі. Спостереження за роботою вчителів-новаторів, аналіз психолого-педагогічної та методичної літератури, аналіз наявних підручників з математики для початкових класів дозволяють стверджувати, що з цією метою використовується система вправ, яка включає в себе принаймні наступні завдання:

1) розв'язування складених задач різноманітних видів і типів;

2) розв’язування задач за поданим планом (такі завдання слід використовувати в 2–4-х класах хоча б один раз на тиждень, для всіх учнів, а з метою особистісної спрямованості навчального процесу навіть і частіше для тих школярів, які не можуть самостійно розв’язати ту чи іншу задачу). При виконанні таких вправ учні другого класу записують тільки розв’язання а школярі третього-четвертого класів – і план, і розв’язання;

Характеристика роботи

Реферат

Кількість сторінок: 40

Безкоштовна робота

Закрити

Теоретико-методичні основи навчання молодших школярів розв’язування текстових задач та розв’язування складених задач

Замовити дану роботу можна двома способами:

  • Подзвонити: (097) 844–69–22
  • Заповнити форму замовлення:
Не заповнені всі поля!
Обов'язкові поля до заповнення «ім'я» і одне з полів «телефон» або «email»

Щоб у Вас була можливість впевнитись в наявності обраної роботи, і частково ознайомитись з її змістом, ми можемо за бажанням відправити частини даної роботи безкоштовно. Всі роботи виконані в форматі Word згідно з усіма вимогами щодо оформлення даних робіт.